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ABSTRACT

The theory of excitation and charge exchange in proton-bydrogen
collisions is discussed within the framework of the impact parameter
method. Consideration is given to the importancle of proper boundary
conditions. The time dependent equations linking the amplitudes of
the target with those of the rearranged system are written in matrix
form. By eliminating the rearrangement amplitudes from tThese equa-
tions a second order matrix eguaticn is derived which may be used as
a basis for successive approximations which are automatically second
order. The theory is generalised with the aid of a two center |

expansion of the electronic wave function. The method is illustrated

by computing first and second order distortion approximations for the

reactions E'+ H(1s) = H'+ H(2s) and H'+ H(1s) - H)1s) + E* and the

resnlts‘%a.re compared with previous calculations.
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§1  Introduction

In this paper we shall be concerned with methods of calcula-

ting the excitation and charge exchange cross sections of proton-

g eyt - o T e s e .

hydrogen collisioms. Our interest will lie mainly in the kilovolt

reglon and for this purpose it is sufficient to use the well known
"impact parameter method"(l) (IPM) in which the protons are
treated as classical™ particles moving with constant relstive
velocity. Thus only the electron need be treated quantum
mechanically as it moves in the time-dependent field of the ™in-
finitely massive" protons.

Unfortunately, the apparent simplicity of this problenm is
plagued by the usual bugbear of atomic scattering theory; %.he
necessity of accounting for the infinite number of hydrogenic
states. Specifically, the sirong coupling found in calculations
based on expansions in atomic orbitals seems to indicate a strong
coupling with states excluded from the calculation and the sub-
sequent slow convergence of this approa.ch( 2). This difficulby
".is somewhat enhanced by the fact that v:.r‘tl.ally all inelastic
‘cha.nnels are energetically permissible. However, relatively
].i'b'tle is known about this coupling and detailed investigations

(3)

are only now being mede'”’. At high energies recent studies




(%)

indicate that the influence of the continuum may well be decisive -
Moreover, since it is not clear how this latter effect could be
incorporated in the usual expansion methods, it is possible that
these methods may converge t0 an incorxrect result. Iz order to
investigate this possibility we bave devised an approximation

scheme based on an expansion in atomic orbitals but which simal-
taneously includes an effect from all those states (including

the continmuum) which have not been explicitly included in the

calculation. Thus, to parellel the usual "first order methods™

we derive a set of "second order methods'.
A partial review of first order methods is given in Sectioz IIT
using a matrix notation introduced in Section II. In coatrast

with previous authors(5 )

we place parbticular emphasis on the
importance of correct boundary conditions. For resonant charge
transfer we introduce a distortion approximation and a modifi-

cation of the Brirnkman-Kramers approximation both of which have

the correct boundary conditions. ZHowever, the main purpose

of the review is to show clearly the analogies between the first

. order methods and the second order methods introduced in Section

IV and to present the mabrix equations necessary in the derivation

of these second order methods. Firally, in Section V, we calculate

cross sections for the reactions

[y

g + 5(18),- B(18) + B



L

B + H(1s) - B + H(25)

according to the distortion approximation in both the first
and second order methods and discuss the significance of the
results.
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§IT Notation

Let e, A and B denote the electron, the target proton and
the incident proton, respectively. Iet R be the position vector

of B relative to 4 and let r,, Iy

and r be the position vectors
of e relative to 4, B and the mid point of AB. In the IFPM it
is assumed that A remains fixed while B moves in a straight line
with a constant speed, v. Thus R = p + vt where t is the time,
chosen such that at t = o the Protons, A and B, khave a - . lmum
separation, g , Which is the impact parameter for the
collision.

The time-dependent Schroedinger equation (in atomic units)(6)

for the complete electronic . wave function, Y (z, t), is

- (TA+VB) ¥ =

=0
or

7 g =

(TB+¥A)"':-0

" where

(1a)

(1v)

(2a)

(2b)
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It /én(;) denotes a hydrogenic eigenfunction with eigenenergy

€ so0 that
n

§B1:1 =¢:n(-1:713) exp (+1 {3 ¥°r - é’vat B ent})

are exact solutions of the unperturbed equations

IBQTano

and form two mutually exclusive complete orthogonal sets.

(3)

(4a)

(4p)

(5a)

(5v)



Consequently we may expand VY as

td

v=3"a

or
V=5 3B
A B A .
where ") and 3 are row matrices with elements
B
@An and & n while A and B are columm matrices with

elements an(t) and bn(i'.). The scalar products (6a, b) imply
integration over the continuum &s well as summation over all
bourd states.

If (1la, b) is solved subject to the boundary condition(h)

s, T——2 GR- AR

. n np
then the probability of excitation of the target from an initial

state (p) to & Pinal state (q) is

P, (p, a) =i-ixf+ ) | 2, (B)[2

and the probability of charge transfer to a state (q) is

(62)

(6v)

(7)

(82)




S

B(p, @) = ia.f . Ibq(t)lz

The corresponding cross sections are obtained by integrating

over all possible impact parameters

._". v
QA’ B(p, 'q) = | dgm’ B (p, a)

(8p)
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§IIT First Order Methods

:By projecting the states QA and SB on (la) and (1b) we
obtain
(éA]TA]Y) = - (C}AIVBi‘i’)
B,
(3 1TB]Y) = - (éBlVA}Y)
where

(éA’BnI-S [¥) =fd£ éA’Bn (r,t) e (z,t) ¥(z,t)

Equations (10a, b) are entirely equivalent to (la,b) and form
a convenient starting point for our discussion of first ordexr
methods.

Substituting (6a) in (10a) and (6b) in (10b) gives

. A
& =1 @Ppgieha

i (8 IVA!@B)B

(102)

(10b)

(11)

(12a)

(12v)



v A
where (QA]VBIQ ) and (éBEVA§§B) are squaere matrices whose

th A A 3 B .
(n, m) " . elements are (& nllvBléé m) and (¢ n'VAlé o)+ Approxi-
mations to (122) may be made by retaining only a few specific
A,
elements of (@A]VBi % ). For example, by retaining only the

diagonal elements the equation is uncoupled and solved by
a =56 {;f;(éA v |&* )dr'}
n np exp n''B'*n

which satisfies (7). To obtain an estimate of 2y (g ¥ ») we
neglect all terms containing states other than (p) and (g},

to give

(13)

(14)

(15)

1
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Equation (14) is solved by )
el [V e} (o]
a = i | v at at'v_a -i} v__at" 16
Q Iq&l J v QPPekaJ aq *()
which, from (8a), leads to the excitation probability

ot
P (p, Q) ~ l f & V2, exp {-i j. qudt'} 12 (17)

Substituting (13) for a_in (17) gives the well known distortion

P
epproximation introduced by Ba"ces(7) in his calculations of
QA(ls, 2s) and QA(ls, 2p). Approximation (17) will prove useful

when further methods of computing aP are discussed later in this

paper.

To procede further with (122) we may solve numerically

- the coupled equations which result when certain specific elements

are retained. For example, Q, (ls > 28) has been calculatec in the

(3) (8)

1sA/2sA'”’ and in the 1si/2sA/2pA approximations tc (12a).

i st e
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By including highe;'c states more accurate results may be ex-

pected. However, the convergence is likely to be slow since no

allowance has been made for coupling with rearrangement states.

Moreover, since the boundary condition (7) is embedded in the .

continuum of B the usefulness of (12a) is greatly restric‘ced(9 ) ;

indeed from a computational point of view it is virtually useless.
As an alternative to (12a, b) we interchange the substitutions

of (6) in the right hand side of (10) to obtain

dAa . A B

T =1(glvfs) B (18a)
B A '

-3% =1i (3 §VAI§> ) A (18b)

Clearly, if we already bave a knowledge of 4, (18b) may be

integrated to give the charge exchange amplitude

Zpe, @) = | [ an (& [v, [&h) 4)2 (19)

The well known Brinkma.n-Kramers(lo) (BK) approximation is ob-

tained from (19) by making the substitution a = 5np. This is



inconsistent with (7). Instead of 5np we substitute

5np(VR - vztyl/ V for a_ in (19) to obtain a modified Brinkman-
Kramers (MBK) approximation which is consistent with (7). The
situation may be further imzproved by substituting (13) for a_
in (3.9) to give a distortion approximation analogous to that des-
cribed above for excitation. '

As a besis for successive approxiwations, however, (18a, b)

is defective. This is illustrated by considering the diagonal

approximation
LA 3B
pn -t \E anB‘ n) bn
- B | A
P = i :
o =1 (3 n‘vA!Q n) a

which has the general solution

i -1
a =c;e'n+cpe Vn

i -1,
b =cleYn-c2e Yn

(20a)

(20p)

(21a)

(21v)



where
v ‘ t
. B A A B
Yo 'I_a“‘nl"a“ ) at' = J.-.,“ MAGRE- S

and c; and cp are arbitrary constants. It is easily shown that
y, venishes rapidly for large negative t so that (21a) is in-
consistent with (7). This fundamental discrepancy cannot be
resolved by the inclusion of further bound states.

To overcome the defects of (12a, b) we .expand ¥ in an
overcomplete set

~¥=6AA+ §BB

vhere A and B are to be determined by (10a, b). The "beauty"

of this two center expansion is that it makes explicit allowance

', for each reaction path and thus circumvents the defects of the

!-"‘single center expansions (65., b) where rearrangement states are
awkwardly contained in the continuum and thus confused with

ionization states. Perhaps an even better expansion would re-
sult if, for example, the second term on the right hand side of

(23) were restricted to a summation over bound states only. We

would then have & clearer physical intexrpretation for the contingum

(22)

(23)



elements of A which would correspond to pure ionization. This
introduces a slight complication, however, and since we are here
mainly concerned with excitation and charge transfer we shall
simply exploit the symmetry of (23). Clearly the bound state
coefficients of (23) must co-incide with those of (6a, b) at
infinite proton separation and there is no meed to alter the pro-
bability definttions (8a, b)

Substituting (23) in (10a, b) gives

dA- , A, B.GB A A A B
g + (18058 1 vyt &+ 1(efv, 1) 8

&+ (@)t (P, ) B+ 1(Pv, ) 4
dat at -l A B

-

Again it is instructive to consider the diagonal approximation.

- This approximation co-incides with the two state approximation

(1) (12)

of Bates and has been solved by McCarroll . The solution

may be put in the form

& = b5 (VR - vzt)-i/v e ja"cos_ Bu

(2%a)

(24v)

(252)

(25b)
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vherea‘ands‘arerealandvanishasttendsto - «, The bound~
ary condition (7) is therefore satisfied by (25a) in contrast
with (21a). ..
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§IV Second Order Methods

Broadly speaking, the methods discussed so far may be
considered in the following way. By restricting the number of
available states to a select few we obtain a tractable model
vhich may be treated precisely by numerical methods. This is
equivalent to aJlowing for an infinite number of transitions
between a limited number of states and it neglects completely
effects due to all other inelastic processes. Thus the continuum,
vhich may play an extremely important role in the intermediate
stages of the collision, is neglected. Methods which attempt
to take account of such transitions are lc;ose]y termed "second

order”. For example, the second :Born(B) (1%) and

, the impulse
the continuum distorted wave(u) aprroximations may be thought of
in this light. The significant feature of these approximations
is that, for resonant gharge transfer form the (1s) state, they

all predict the high energy behaviour(l5)

Qy(1s, 15) o (02046 +% v) @y (s, 1s)

. » ” < )
vhere i is a small (and for our purposes, insignificant) constant,
and X (18, 1s) 1s the Brinkman-Kramets cross section

(26)

o e ¢ e ere s e L ae BT T T T L
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(15, 18) = B (14203 (mo?)

This is in very sharp contract with the high energy behaviour

. of first order methods. The two state Bates-McCarroll spproxima-

e o £ ibbe

tion behaves like Q_BKB(ls, 15){22) a4 high energies and there is
no reason to suspect that this will be significantly altered by
the inclusion of further bdund states. However, the second order
methods mentioned above give poor results at low energies (below
30 kev) and seem to be incapable of systematic improvement.More-
over one's confidence in (26) is, to some e;rbent, undermined by
the likelihood that the Born series diverges for rearrangement

collisions(m) . Clearly it would be advantageous to devise an

approximation scheme which includes effects from all inelastic

processes and which may similtaneously 'be treated by suc.cssive

approximations based on the inclusion of the more significant

discrete states. We now proceed towards this end.

. First, let us consider how we could, in principle, solve the
; coupled equations (18a, b). Suppose we start by substituting
a given first order approximation to A in (18v). We could then

calculate each element of B and substitute the result in (18a).

BT e

This would involve an infinite number of coefficients, bn,

(27)

3

it .
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corresponding to the infinite number of available hydrogenic
states. Moreover, the most important of these (corresponding

to rearrangements) are embedded in the continuum. Nevertheless, -
having surmounted these barriers we would now perform the in-
finite sum implied in the R.H.S. of (18a) and proceed to
calculate the second order approximation tc; A. Ve would then
répeat this process and hope tkat A would converge in successive
iterations. However, if we could somehow eliminate B from

(18a, b) the intermediate stages described above would automatically
be contg.ined. in the resulting equation for A. This is the cen-

tral idea of the present paper. The process of eliminating B

from (18a, b) is now performed.

-1
Assuming the existence of the matrix (;g[v BIQA) we consider

: the product

(@I R = (PR = (PP) =1 (28)

‘where I denotes the unit matrix. In the derivation of (28)

vehe:vemdeubebf the closurepr_opertyof QAtogethervith

the orthogonality of &>. Similarly, we can show that

Nt T b T

~

e e Lt e

R T SRR

e

£y e
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A Bi.,- ..
(3" [, [ ) (o' vty -z
80 that, formally,

(P2 ]eh = (P2

This enables us to write (18a) as

Bm-1 (Pl a

and, differentiating both sides,

© & (Bio=1 A 0A B <1 A LA
+ 'Eb-a-{i'a't'(ﬁ lV lBl§ )}a"i(i lv IBIQ) E«EZ

Making use of (5b) and assuming the validity of Green's Theorem, .

we have

(29)

(30) .

(31)

(32)

A



L (@6 - (1597218 |

whence (32) becomes

dA

1 & = (PR 1 (Pl

We now substitute (18b) forg%m (34) and'pre-multiply 'by
(s* vy l§ ), making use of (30) and the closure propert;
§ , to obtain

2p
d i(§]VTBV |§11—+(91VVA|§)A=0

which is the desired result. Thus, we have replaced two coupled
first order mstrix equations by a single second order matrix
éqution. A similar analysis, in which A is eliminated from
(18a, b) yields

g—?& -1 (3 IVATAV-J'A"B)EE“ (&|v l BI%B) B=o

(33)

(4

(35a)

(350)

A e s A T . & e S A e B U, W S

tn sl wm e s 4 e e

e S g,y e s




If we now perform calculations in which only a limited

number of elements of @A are retained in the matrices

(QA [vB'nBv'lB| QA) and (aA ivaAl@A) we already include continuum
effects due to the intermediate transitions of (18). Eq. (35a)

is most useful for calculating excitation amplitudes while (35D)
suffers from the difficulty of including the proper bouz;da.ry
conditions and in this respect it resembles (12b). The usefulness
of (35a, b) is therefore restricted. To overcome this limitation
we mist use {2ha, b) as our starting eguations rather than (1B8s, b).
In this case the derivation of the second order equations is
somewhat more complicated although the principles involved are
similar to those employed above. A simpler derivation, which

has the additional advantage of avoiding assumptions about the

existence of the inverse matrix, follows from the identities

(Hrpry iy = Gy ly (36a)

(Ll = (& LAREY | (36p)

vhich may easily be verified with the aid of (la, b). Eguations
(36 a, b) may be considered as the starting point of the second

order theory replacing (10a, b) of the first order theory. For

B e ot et sk SN

[
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example, by substituting (6a) in (36a) and (6b) in (36b) we ob-
tain (35a) and (35b), which are the second order analogs of (12a)
and (12b). Similarly by substituting (23) for ¥ in (36a, b)

Ve obtain the second order analog of (24ka, b). The result is

a2 A o= A QA | . A
a2 - 1 (& VTV 4 08") &+ (o ]VAVBM‘A) A

; = - (3 Iint+i(§ IVTV Blﬁ)dt (37a)

+ (g vgmiy, - IAATSEY

, )
., & - 1 (P | P + (Q AAATHE:

~-(§Bl§ 2 1 (v, v |§A) )

+(§1AAAV IQ)A
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Finally, we note the following useful relationships which may

easily be verified

. ) -1
(QA*V TV

(QBIVATB";'F) =A-i§g (¢B|2"~VA|4:) +(@B|év: + (1+ky, ) 1) £)

¥
RA

.
\‘
t

R

\

Y

.

~

O D S 0 OO O U P

BAB | g) =-ifr (@Alv"vsl.c) v (Eha2 « (14 WV)T, |£)

(38a)

(38b)

LT R Y AT e &

e
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%  Detailed Calculations

To illustrate the method we calculate als(t) by applying
the diagonal approximation to (35a). The solution may be re-
garded as the second order analog of (13) and is used to cal-
culate inelastic cross sections by substituting it into the
appropriate first order matrix elements. This procedure is
slightly inconsistent and the results obtained are not truely
representative of the second order approach. For example, by
applying the diagonal approximation to (37a, b) we would have
obtained a second order equivalent of the two state Bates-McCarroll
approximation. However, such a calculation would be rather complex
and will therefore be delayed to a later date.

Our equation for a;g(t) is

2
g?als (t) (P -1iQ) %als (t) + Hayg (t) = o

where

Y s

ST A

NS A

A ol TR TR St

% B v 2

R

TS e e TR T R R e B




d A A
P=-3 (8 15| Q/\\,VBIQ 18)

A

C Ao 1A
H= {3V ipl2) -

It must be solved subject to

ag(t) ~ (vR - v26)"MV
(41)

"b—'-w

, Details are given in the appendix. We denote the result of this
" second order calculation by a(®)_(t) to aistinguisn it from the
corresponding first order result, (13), which we denote by a(l) 1s(t).
. Figure 1 shows ".lag,as)(t)* for p = 0.1305 and v=l. Note
the deep troughﬁhich occurs just after impact and the slight

decaying oscillation which follows as the izi'berproton distance

,,,

“-ao
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(2) 15(t)| settles to a constant, somewhat

increases and ]a
less than unity. This behaviour is typical, the depth of <ne
trough decreasing m.th incleasing impact parameter and velocity.
]a(l)m(t)l is,Aof course, every where unity since, unlike

10 5(5) |, 1t does not shere probability with competing in-
elastic chamnels.

First and second order distortion approximations to the
excitation probability, PA( 1s, 2s), are obtained by replacing
a1s(t) of (17) vy a.(l)ls and a(zgs and the corresponding cross
sections, QDJ'A(ks, 2s) and QDZA(ls, 2s), are tabulated, together
with the first Born cross section, in table 1. QD"A(I.S, 2s) is
smaller than QBA(is, 2s), especially at low energies. This re-
sults from, the presence of the phase factor in the overlap integral
of the former. QDZA(ls, 2s) is smaller than QDlA(ls, 2s) as a
consequence of the allowance for inelastic processes inherent
in a(ags(t). The comparative purposes, the above results are
shown in figure 2 together with some calculations of previous

authors. It is seen that the distortion approximations are in

" broad agreement with the 1sA/2sA approximation to (12a) and the

1sA/2sA/1sB approximation to (2La, b) but show a marked dis-

agreement with - treatments which take account of excitation to

the 2p levels.(s) » 1) where the computed cross sections are '

T s NS e 8w e | i e & A S
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larger than QBA(ls, 2s). This is not too surprising, for the
optically allowed ls-2p tranéitions are expected to have large

cross sections, and since the 2p and 2s states are degenerate

~ we may expect a strong coupling between these states and a conse-

quent increase in the computed cross section, QA(ls, 2s). How-
ever, as we have seen, the second order treatment has the effect
of reducing the cross section in the distortion approximation
and if a similar effect should occur in a second order calculation
With allowance for intermediate 2p states it appears likely
that the final result may be close to that of the first Born ap-
proximation.

For resonant charge transfer we calculate the MBK arnd dis-~

tortion cross sections, QMB(J.S, 1s) ana Q"3 (1s, 1s), described

in Section III. The second oi'd.er distortion approximation is ob-

(2) . :
152 ls(t) for A in (19). The resultant

cross section, QDaB(ls, 1s), is tabulated together with QMBKB(IS, 1s)

tained by substituting § n
t4

QBKB(ls, 1s), QDIB(ls,ls) and the Bates-McCarroll cross section

Q,BMB(ls, 1s) in Table 2. Of the a@bove cross sections only
BK ..

" Q Bu.s, 1s) is derived with incorrect boundary conditions for

‘a15(t) and, as may be seen from the table, it is in considerable

disagreement with the other tabulated cross sections over most of
the energy region considered. The difference be‘l‘m‘een.QD"E (1s,1s)
and QDZB(J.S, ‘1s) illustrates the distinction between first and

second order effects. QDZB(ls, 1s)is in extremely good agreement’
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with Qo

coupling effects of QBMB(ls, 1s) are largely accounted for in

(1s, 1s) and this seems to indicate that the back

Q%2 (1s, 1s). However, it should mot be concluded from this
that these cross sections provide an accurate representation of
the exact Tesult since the methods considered have taken 1o
account of contritmtions from terms other than ayg(t).

Such contributions, if important, should be apparent in a

proper two state calculation based on (37a, b).

o

B . L L L I Srrreviey

raw e e b



ACKNOWLEDGMENTS

. I should like to thank Mr. Edward Sullivan for programming
the numerical calculations on the IBM T094. I should also like
to thank Dr. A. Temkin and Dr. M. H. Mittleman for helpful
discussions. This work was performed whil;a the author held a
Resident Research Associateship of the National Academy of

Sciences ~ National Resea.rch Council.




Appendix

The coefficients of (40) are found to be
v R R a 1
P "ﬁ@ - %l - -2-K°>= E(‘B&R+ E(Ko + Kl))

- 2R 1 - 1t
Q=1+e -ﬁ'(l-eER)‘—ZR?Kl

1 -2R
HaR(l-e )

with

-2R

' Ko = R E(R) - e R 5 (1)

K = 2 Ko -R [®a(er) + e (-2m)]

(a1)

(a2)

(a3)

(45)

e



- .

and
[-+]
E(x) =I -]; e-fdy
x
Writd
i®
815 =a e
we have
L+pi+ (E-o @Q)as=o
&.+<§- é._,,P)u:P%
where
"

-31 -

(48)

(a9)

(A7)

(a6)

A et Aen
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o = © (a10)

The boundary condition (7) implies that as t - - © & = 1

‘i‘o

venient to introduce

‘With these considerations in mind it was found con-

¥ =g a2 e> (a11)
where
1l
£=)-TR-(KO+K1)» (A12)

and to replace (AB) and (A9) by three coupled first order

equations

é#%e b (A13)
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and to solve these numerically with the boundary conditions

Iim a = 1

T =~ -

ft = -

L = =

(A1k) |

(w5)
(A16)
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Table 1

Cross sections for H' + H(1s) - B + H(2s) in units of mmo?

lcg (Erergzy (keV))

1.00
1.25
1.50
.73
2.00

2.50

Q. (is,2s)

> bl

5.571C

4.10x10 *

- -z
S TAAT -~
P

-
- F*.-.‘.~‘C i
i @ e’

1.03x10 *

3.42x10°2

Q7 {1s,2s)

(Pl )

6.79x10 2
1.31x10
1.4600° %

:..d.}&-".’ ol -
8.42x1072
3.22x10 2

ti

2(1s,2s)

Q

I'-‘

2.56x10 2

5.70x10 2

0250 2

e LAl

. -
L AR N B )
HEAI R Y

6.07x10 2

2.57x10 2




. ‘ ‘ - 35 -

Table 2

: : +
Cross sections for H' + H(1s) - H(ls) + H' in units of pr Ve

‘ Energy (kev) 5 25 50 100 400
Q%K(ls,ls) 2.01x102 1.68x10*  3.37  4.00x10°  1.02x10°®
e (1s,18)  5.02 3.81 119 1.85x10™r  6.15x107%
le(ls,ls) 4.38 . 4.87 1.52 2.31x10 * 7.86x107%
an(ls, 1s)  4.08 3.08. 1.00 1.55x10 * 5.29x10 ¢

M1s,15)  11.3 3.13 7.70x10 % 1.15x10 *  5.38x107%¢

6

1000

7-94x10°°
6.87x10° 6
5.77x10'5
5.5x107¢

5.82x10 ¢
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Figure Legends

Figure 1 :]a;(:)(‘t)[ for v = 1 and p = 0.1035

Figure 2 Cross sections for i 2(1s) - E o+ E(2s)
(17)

O
\y

1, Second Born approximation

2, 1sA/2sA/2pA approximation

. (185
3, first Born approximation

(7)

4, first order distortion approximation
L (3
‘5, lsA/2sA approximstion

6, second order distortion approximation

7, lsA/1sB/2sA approximation(3 )
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